Clinical Cases in Secondary Stroke Prevention

CSHP Ontario Branch 71st Annual Conference

November 16, 2019

Jacqui Herbert, BScPhm, ACPR

Clinical Pharmacist – Stroke Rehabilitation

Toronto Rehabilitation Institute, UHN

Disclosures

I have no financial disclosures or conflicts of interest to report

I have no current or past relationships with commercial entities

This program has received no financial or in-kind support from any commercial or other organization

Learning Objectives

- 1. In the context of clinical cases:
 - a. Review ischemic stroke risk factors, etiologies, and workup
 - b. Review major trial outcomes in stroke
 - c. Determine appropriate secondary ischemic stroke prevention including considerations for antithrombotic therapy, lipid-lowering therapy, and hypertension management
- 2. Apply the above knowledge to patient cases to make appropriate clinical decisions

Background

Stroke: term used to describe an abrupt-onset focal neurological deficit that lasts at least 24 hours and is of presumed vascular origin¹

- Location of the injury determined through imaging studies of the brain (i.e. CT, MRI)
- > NIH Stroke Scale (NIHSS) can help quantify impairment from stroke (0-42)

Stroke survivors are at high risk of recurrent stroke, often more severe and disabling than index event²

Optimal secondary prevention of stroke requires rapid diagnosis and treatment including prompt identification of the underlying cardiovascular cause²

Focus of today's workshop will be cases of **ischemic stroke** prevention beyond the acute phase

Secondary Stroke Prevention

Case 1:

Harry is a 54 year old male patient in ER. He woke up with new left arm weakness and left facial droop (last seen well last night at 22:00). CT head was initially negative; MRI confirmed R lacunar infarct.

Past Medical History:

• None known, no GP

Current Medications:

• None

Social History:

- Drinks approximately 20-25 alcoholic drinks per week
- Smokes 1 ppd x 30 years

What medications should be started for appropriate secondary stroke prevention?

Case 1:

Harry is a 54 year old male patient in ER. He woke up with new left arm weakness and left facial droop (last seen well last night at 22:00). CT head was initially negative; MRI confirmed R lacunar infarct.

What medications should be started for appropriate secondary stroke prevention?

Polling question: most appropriate antithrombotic therapy for Harry right now?

- A. Acetylsalicylic acid (ASA)
- B. Clopidogrel
- C. ASA and Dipyridamole
- D. A, B, or C
- E. DAPT ASA + Clopidogrel x 21-30 days, then SAPT with either agent
- F. DAPT ASA + Clopidogrel x 90 days, then SAPT with either agent
- G. Oral anticoagulation

Step one: Determine etiology

Ischemic stroke etiology

Ischemic Stroke Workup

Brain imaging		
• CT or MRI		
Vascular imaging (including carotid imaging)		
• CTA or MRA from aortic arch to vertex or carotid ultrasound		
12-lead ECG + additional cardiac rhythm monitoring		
 For patients being investigated for embolic stroke, ECG monitoring for >24H recommended to detect paroxysma For patients being investigated for embolic stroke whose short-term ECG monitoring does not reveal AF but car suspected, prolonged ECG monitoring for at least 2 weeks is recommended in selected patients 	al AF (Holter monitor) rdioembolic mechanism is	
Laboratory investigations		
• CBC, electrolytes, aPTT, INR, SCr, troponin, hemoglobin A1C, lipid panel		
Transthoracic echocardiogram (TTE)		
 To assess for valvular abnormalities, visualize thrombus if present, detect wall motion abnormalities Bubble study to assess for intraatrial shunt indicating atrial septal defect or patent foramen ovale 		

Ischemic Stroke Risk Factors

Lifestyle factors

Unhealthy diet

Physical inactivity

Psychosocial stress

Excessive alcohol intake

Obesity / low waist-to-hip ratio

Cigarette smoking

Medical conditionsHypertensionDiabetes mellitusDyslipidemia

Atrial Fibrillation

Non-modifiable risk factors

Sex (male)

Family history

↑ Age

Race/Ethnicity (Indigenous, South Asian, African)

Personal circumstances (access to healthy food, health and social services)

1. https://www.heartandstroke.ca/stroke/risk-and-prevention 2. O'Donnell MJ, Chin SL, Rangarajan S et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. *Lancet*. 2016; 388: 761-765.

Secondary Stroke Prevention

"All patients with ischemic stroke or transient ischemic attack should be prescribed antiplatelet therapy for secondary prevention of recurrent stroke unless there is an indication for anticoagulation"¹

Antiplatelet therapy in secondary stroke prevention

Acetylsalicylic acid (ASA) 80-325 mg

Clopidogrel 75 mg

Acetylsalicylic acid (ASA) 25 mg – extended-release dipyridamole 200 mg

> Wein et al. Canadian Stroke Best Practices Guidelines: Secondary Prevention of Stroke. Int J Stroke, 2017

DAPT in secondary stroke prevention

ASA and clopidogrel inhibit platelet aggregation synergistically

In some trials of stroke patients, the combination of ASA and clopidogrel has not been successful and increases the risk of bleeding and mortality (MATCH, SPS3)

But, these trials delayed administering secondary prevention until 1-2 months after stroke

More recently, trials have suggested that certain patients may benefit from dual antiplatelet therapy (DAPT), started **right after the event** and continued for a **short period of time**, when the risk of re-stroke is highest

Diener HC et al. ASA and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet. Jul 24-30 2004;364(9431):331-33

^{2.} Benavente OR et al. Effects of clopidogrel added to ASA in patients with recent lacunar stroke. N Engl J Med. Aug 30 2012;367(9):817-825.

CHANCE (2013)

Population	Patients (in China) 40 years or older, randomized within 24 hours after having an
	acute ischemic stroke (NIHSS 3 or less) or a high-risk TIA (ABCD ² score of 4 or
	more) of non-cardioembolic origin

Intervention DAPT: Clopidogrel 300 mg load then 75 mg daily x 90 days + ASA 75-300 mg x 1 day then ASA 75 mg daily x first 21 days

Comparison Placebo + ASA 75-300 mg x 1 day then ASA 75 mg daily x 90 days

Outcome Stroke (ischemic or hemorrhagic)

Table 2. Efficacy and Safety Outcomes.							
	Outcome	Aspirin (N = 2586)		Clopidogrel and Aspirin (N=2584)		Hazard Ratio (95% CI)	P Value
		Patients with Event <i>no</i> .	Event Rate %	Patients with Event <i>no</i> .	Event Rate %		
	Primary outcome						
	Stroke	303	11.7	212	8.2	0.68 (0.57–0.81)	<0.001
	Secondary outcomes						
	Stroke, myocardial infarction, or death from cardiovascular causes	307	11.9	216	8.4	0.69 (0.58–0.82)	<0.001
	Ischemic stroke	295	11.4	204	7.9	0.67 (0.56-0.81)	< 0.001
	Hemorrhagic stroke	8	0.3	8	0.3	1.01 (0.38–2.70)	0.98
	Myocardial infarction	2	0.1	3	0.1	1.44 (0.24-8.63)	0.69
	Death from cardiovascular causes	5	0.2	6	0.2	1.16 (0.35–3.79)	0.81
	Death from any cause	10	0.4	10	0.4	0.97 (0.40-2.33)	0.94
	Transient ischemic attack	47	1.8	39	1.5	0.82 (0.53–1.26)	0.36
	Safety outcomes						
	Bleeding*						
	Severe	4	0.2	4	0.2	0.94 (0.24-3.79)	0.94
	Moderate	4	0.2	3	0.1	0.73 (0.16-3.26)	0.68
	Mild	19	0.7	30	1.2	1.57 (0.88–2.79)	0.12
	Any bleeding	41	1.6	60	2.3	1.41 (0.95–2.10)	0.09

* Bleeding events were defined according to the Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries criteria as follows: severe bleeding was defined as fatal or intracranial hemorrhage or other hemorrhage causing hemodynamic compromise that required blood or fluid replacement, inotropic support, or surgical intervention; moderate bleeding as bleeding that required transfusion of blood but did not lead to hemodynamic compromise requiring intervention; and mild bleeding as bleeding not requiring transfusion and not causing hemodynamic compromise (e.g., subcutaneous bleeding, mild hematomas, and oozing from puncture sites).²²

The CHANCE investigators. Clopidogrel with ASA in Acute Minor Stroke or Transient Ischemic Attack. *N Engl J Med* 2013;369:11-19.

POINT (2018)

Population	Patients (mostly North American) 18 years or older, randomized within 12 hours
	after having an acute ischemic stroke (NIHSS 3 or less) or a high-risk TIA (ABCD ²
	score of 4 or more) of non-cardioembolic origin

Intervention	DAPT: Clopidogrel	600mg load then	75mg daily + ASA 5	0-325mg daily x 90 days
--------------	-------------------	-----------------	--------------------	-------------------------

Comparison Placebo + ASA 50-325mg daily x 90 days

OutcomeComposite of ischemic stroke, MI, or death from ischemic vascular causesPrimary safety outcome – major hemorrhage

Table 2. Efficacy and Safety Outcomes.						
Outcome	Clopidogrel plus Aspirin (N = 2432)	Aspirin (N = 2449)	Hazard Ratio (95% CI)	P Value		
	number	(percent)				
Primary efficacy outcome						
Composite of ischemic stroke, myocardial infarction, or death from ischemic vascular causes	121 (5.0)	160 (6.5)	0.75 (0.59–0.95)	0.02		
Secondary efficacy outcomes						
Ischemic stroke	112 (4.6)	155 (6.3)	0.72 (0.56–0.92)	0.01*		
Myocardial infarction	10 (0.4)	7 (0.3)	1.44 (0.55–3.78)	0.46*		
Death from ischemic vascular causes	6 (0.2)	4 (0.2)	1.51 (0.43–5.35)	0.52*		
Ischemic or hemorrhagic stroke	116 (4.8)	156 (6.4)	0.74 (0.58-0.94)	0.01*		
Composite of ischemic stroke, myocardial infarction, death from ischemic vascular causes, or major hemorrhage	141 (5.8)	167 (6.8)	0.84 (0.67–1.05)	0.13*		
Primary safety outcome						
Major hemorrhage	23 (0.9)	10 (0.4)	2.32 (1.10–4.87)	0.02		
Other safety outcomes						
Hemorrhagic stroke	5 (0.2)	3 (0.1)	1.68 (0.40-7.03)	0.47		
Symptomatic intracerebral hemorrhage	2 (0.1)	2 (0.1)	1.01 (0.14-7.14)	0.99		
Other symptomatic intracranial hemorrhage	2 (0.1)	0		0.16		
Major hemorrhage other than intracranial hemorrhage	17 (0.7)	7 (0.3)	2.45 (1.01-5.90)	0.04		
Minor hemorrhage	40 (1.6)	13 (0.5)	3.12 (1.67-5.83)	<0.001		
Death from any cause	18 (0.7)	12 (0.5)	1.51 (0.73–3.13)	0.27		

* Post hoc correction for multiple testing of five secondary end points by the Bonferroni method resulted in a P value of 0.01 to indicate a significant difference between groups.

Time Period	Outcome	Clopidogrel- Aspirin (N=2432)		Clopidogrel- Aspirin		Aspirin		Hazard Ratio	P Value	e	
i chicu				(N=2449)		(95% CI)					
		Patients with Event <i>no</i> .	Event Rate %	Patients with Event <i>no.</i>	Event Rate <i>%</i>						
0-7 days	Ischemic stroke, MI, or ischemic vascular death	70	2.9%	111	4.5%	0.74 (0.55 - 0.99)	0.04				
	Major hemorrhage	7	0.3%	4	0.2%	1.82 (0.55 – 6.22)	0.34				
8-90 days	Ischemic stroke, MI, or ischemic vascular death	51	2.1%	49	2.0%	1.03 (0.70- 1.53)	0.88				
	Major hemorrhage	16	0.7%	6	0.2%	2.69 (1.05 - 6.86)	0.04				
0-30 days	Ischemic stroke, MI, or ischemic vascular death	96	3.9%	141	5.8%	0.73 (0.56 - 0.95)	0.02				
	Major hemorrhage	12	0.5%	6	0.2%	2.05 (0.76 - 5.56)	0.16				
31-90 days	Ischemic stroke, MI, or ischemic vascular death	25	1.0%	19	0.8%	1.30 (0.72 - 2.36)	0.39				
	Major hemorrhage	11	0.5%	4	0.2%	2.77 (0.88 - 8.70)	0.08				

Table S4. Efficacy and Safety Stratified by Time Period

From the guidelines...

"In very high risk TIA patients [...] or minor stroke of non-cardioembolic origin (NIHSS 0-3), a combination of clopidogrel and ASA **should be given for a duration of 21 to 30 days** followed by antiplatelet monotherapy (such as ASA or clopidogrel alone) [Evidence Level A].

A minimal loading dose of 300 mg Clopidogrel (based on dose in CHANCE) up to 600mg (based on dose used in POINT) and 160 mg of ASA should be given at the start of treatment [Evidence Level A].

Dual antiplatelet therapy should be started **as soon as possible after brain imaging**, within 24 hours of symptom onset, and ideally within 12 hours."

Case 1:

Harry is a 54 year old male patient in ER. He woke up with new left arm weakness and left facial droop (last seen well last night at 22:00). CT head was initially negative; MRI confirmed R lacunar infarct.

What medications should be started for appropriate secondary stroke prevention?

Polling question: most appropriate antithrombotic therapy for Harry right now?

- A. Acetylsalicylic acid (ASA)
- B. Clopidogrel
- C. ASA and Dipyridamole
- D. A, B, or C
- E. DAPT ASA + Clopidogrel x 21-30 days, then SAPT with either agent
- F. DAPT ASA + Clopidogrel x 90 days, then SAPT with either agent
- G. Oral anticoagulation

Secondary Stroke Prevention

Case 1:

Harry is a 54 year old male patient in ER. He woke up with new left arm weakness and left facial droop (last seen well last night at 22:00). CT head was initially negative; MRI confirmed R lacunar infarct.

What medications should be started for appropriate secondary stroke prevention?

Hypertension: acute phase

Hypertension: long-term

Hypertension is the single most important modifiable risk factor for stroke prevention

"Randomized controlled trials have not defined the optimal time to initiate blood pressure lowering therapy after stroke or transient ischemic attack. Blood pressure lowering treatment should be **initiated or modified before discharge from hospital** [Evidence Level B]"¹

"Strong consideration should be given to the initiation of antihypertensive therapy after the acute phase of a stroke or transient ischemic attack (Grade A).

Treatment with an ACE inhibitor and thiazide/thiazide-like diuretic combination is preferred (Grade B)"²

Based on PROGRESS trial results (2001)

Hypertension: long-term targets

What if...?

The patient was taking ASA 81mg daily prior to the stroke?

Case 2

George is a 64 year old patient admitted to hospital with a new R MCA territory stroke 3 days ago

Past Medical History:

- Hypertension
- BPH

Home Medications:

- Candesartan 32mg PO daily
- Hydrochlorothiazide 25mg PO daily
- Tamsulosin SR 0.4mg PO daily

Relevant Findings & Laboratory Results:

- BP 135/85, HR 68
- Weight 80kg

NIHSS 8

• LDL 4.5 mmol/L

HbA1C 5.8%

- Hgb 154 g/dL
- SCr 88 umol/L
- ECG: Normal Sinus Rhythm
- 48-hour Holter : Normal Sinus Rhythm
- TTE: Normal LV/RV size and function, no obvious thrombus, no significant valvular pathology
- CTA head/neck: Extensive intracranial atherosclerosis, including ~80% stenosis of middle cerebral artery

Polling question: most appropriate antithrombotic therapy for George?

- A. Acetylsalicylic acid (ASA)
- B. Clopidogrel
- C. ASA and Dipyridamole
- D. A, B, or C
- E. DAPT ASA + Clopidogrel x 21-30 days, then SAPT with either agent
- F. DAPT ASA + Clopidogrel x 90 days, then SAPT with either agent
- G. Oral anticoagulation

ICAS: Intracranial Atherosclerotic Stenosis

Atherosclerotic lesions affecting intracranial large arteries: internal carotid, middle cerebral, vertebral, and basilar arteries

Carries a large risk of stroke and is associated with a high risk of recurrent stroke Approximately 23% at 1 year despite treatment with ASA and standard management of vascular risk factors What is the most appropriate antithrombotic therapy for patients with ICAS?

Management of ICAS

Antithrombotic therapy for ICAS

Antiplatelet vs Anticoagulant: Warfarin-ASA in Intracranial Disease (WASID) trial (2005)

Population: Patients with recent TIA or stroke and intracranial artery stenosis of 50 to 99%

Intervention: Dose-adjusted warfarin (INR 2-3)

Comparator: ASA 1300 mg daily

Outcome: Ischemic stroke, brain hemorrhage, or death from vascular causes other than stroke

Results: Enrollment ended early (after 569 patients) because of safety concerns in warfarin group

Endpoint	ASA vs. Warfarin			
Death	4.3% vs 9.7% [HR 0.46 (0.23-0.90)]			
Major hemorrhage	3.2% vs 8.3% [HR 0.39 (0.18-0.84)]			
MI or sudden death	2.9% vs 7.3% [HR 0.40 (0.18-0.91)]			
Death from vascular causes	3.2% vs 5.9%			
Primary end point	22.1% vs 21.8% [HR 1.04 (0.73-1.48)]			
WASID (2005)

Failure of warfarin therapy mainly driven by high bleed incidence

Table 4. Post Hoc Analysis of On-Treatment, INR-Specific Rates of Major Hemorrhage, Ischemic Stroke, and Major Car- diac Events among Patients Randomly Assigned to Receive Warfarin.*							
INR Category';	No.of Patient- yr‡	Major Hemorrhage		Ischemic Stroke		Major Cardiac Event§	
		No. of Events	No. of Events per 100 Patient-yr (95% CI)	No. of Events	No. of Events per 100 Patient-yr (95% CI)	No.of Events	No. of Events per 100 Patient-yr (95% CI)
<2.0	92.5	1	1.1 (0.03-6.0)	23	24.9 (15.8–37.3)	10	10.8 (5.2-19.9)
2.0-3.0	256.9	9	3.5 (1.6-6.6)	13	5.1 (2.7-8.7)	1	0.4 (0.01-2.2)
3.1-4.4	52.6	8	15.2 (6.6-30.0)	3	5.7 (1.2-16.7)	3	5.7 (1.2–16.7)
≥4.5	4.9	6	123.3 (45.3–268.4)	1	20.6 (0.5–114.5)	0	0 (0-61.6)

* The analysis did not include follow-up time or events while patients were not receiving study medication. The events not included were 3 of 27 major hemorrhages, 9 of 49 ischemic strokes, and 7 of 21 major cardiac events. IN R denotes international normalized ratio, and CI confidence interval.

⁺ The categories coincide with the prespecified target INR range (2.0 to 3.0) and critically high INR range (≥4.5).¹³

The method assumed a linear interpolation to estimate INRs between consecutive INR tests. For example, if two consecutive INRs obtained a month apart were in the therapeutic range, the method assumed that the INR was in the therapeutic range for the entire month.

§ A major cardiac event was defined as myocardial infarction or sudden death.

SAMMPRIS (2011)

Population	Patients with recent TIA or stroke with ICAS of 70-99% of the diameter of a major intracranial artery		
Intervention	n Aggressive medical management using ASA 325 mg + clopidogrel 75 mg x 90 days PLUS angioplasty + stenting		
Comparison	Aggressive medical management using ASA 325 mg + clopidogrel 75 mg x 90 days		
Outcome	Stroke or death within 30 days after enrollment or after a revascularization procedure for the qualifying lesion during the follow-up period or stroke in the territory of the qualifying artery beyond 30 days		

Results:

- Enrollment ended after 451 patients randomized because 30-day rate of stroke or death was 14.7% in the stent group and 5.8% in the medical management group
- 1- year rate of primary endpoint in stent group was 20.0% vs 12.2% in the medical management group

"Aggressive medical management"

Identical between the two groups:

ASA 325 mg daily + Clopidogrel 75 mg daily for 90 days after enrolment Management of primary risk factors:

Target SBP <140 mmHg (<130 mmHg for diabetic patients)

Target LDL <1.81 mmol/L

Management of secondary risk factors:

Diabetes

Elevated non-HDL

Smoking

Excess weight

Insufficient exercise

	Table 3. Primary and Secondary End Points and Other Major Adverse Events.							
End Point		Medical-Management Group (N=227)		PTAS Group (N=224)			P Value*	
		Patients with Event	Probability at 30 Days	Probability at 1 Yr	Patients with Event	Probability at 30 Days	Probability at 1 Yr	
		no. (%)	% (9	5% CI)	no. (%)	% (9	5% CI <u>)</u>	
	Primary end point†	26 (11.5)	5.8 (3.4–9.7)	12.2 (8.4–17.6)	46 (20.5)	14.7 (10.7–20.1)	20.0 (15.2–26.0)	0.009
	Ischemic stroke in territory of qualifying artery within 30 days after enrollment	10 (4.4)			23 (10.3); 1 fatal (0.4)			
	Ischemic stroke in other territory within 30 days after enrollment	2 (0.9)			0			
	Symptomatic brain hemorrhage within 30 days after enrollment‡	0			10 (4.5); 4 fatal (1.8)			
	Non–stroke-related death within 30 days after enrollment	l (0.4) §			0			
	Ischemic stroke in territory of qualifying artery beyond 30 days after enrollment	13 (5.7)			13 (5.8)			
	Secondary end points							
	Any stroke or death	37 (16.3)	5.8 (3.4–9.7)	17.5 (12.8–23.6)	52 (23.2)	14.7 (10.7–20.1)	23.4 (18.1–29.8)	0.06
	Death¶	7 (3.1)	0.4 (0.1–3.1)	4.1 (2.0-8.5)	7 (3.1)	2.2 (0.9–5.3)	3.4 (1.6–7.2)	0.95
	Any stroke	32 (14.1)	5.3 (3.1–9.2)	14.9 (10.6–20.7)	50 (22.3)	14.7 (10.7–20.1)	22.3 (17.2–28.7)	0.03
	Ischemic stroke in territory of qualifying artery	23 (10.1)			36 (16.1)			
	Ischemic stroke in other territory	8 (3.5)			4 (1.8)			
	Symptomatic brain hemorrhage‡	1 (0.4)			10 (4.5)			
	Disabling or fatal stroke**	13 (5.7)	1.8 (0.7–4.8)	6.4 (3.7–11.1)	19 (8.5)	7.0 (4.3–11.4)	9.0 (5.7–13.9)	0.21
	Ischemic stroke in territory of qualifying artery	7 (3.1)			8 (3.6)			
	Ischemic stroke in other territory	5 (2.2)			3 (1.3)			
	Symptomatic brain hemorrhage:	1 (0.4)			8 (3.6)			
	Myocardial infarction	7 (3.1)	1.3 (0.4–4.1)	4.0 (1.9-8.4)	5 (2.2)	0.5 (0.1–3.2)	2.2 (0.8–5.8)	0.60
	Major non–stroke-related hemorrhage††	4 (1.8)	0.9 (0.2–3.5)	1.4 (0.4–4.2)	10 (4.5)	2.7 (1.2–5.9)	3.6 (1.8–7.1)	0.10
	Subdural	1 (0.4)			0			
	Gastrointestinal	3 (1.3)			4 (1.8)			
	Ocular	0			l (0.4)			
	Lingual hematoma	0			1 (0.4)			
	Angiogram access site	0			4 (1.8)			
	Any major hemorrhage‡‡	5 (2.2)	0.9 (0.2-3.5)	1.8 (0.7-4.8)	22 (9.8)	8.0 (5.1–12.5)	9.0 (5.9–13.5)	<0.001
	Symptomatic brain hemorrhage‡	1 (0.4)			10 (4.5)			
	Asymptomatic brain hemorrhage∬	0			2 (0.9)			
	Major non-stroke-related hemorrhage	4 (1.8)			10 (4.5)			

The SAMMPRIS investigators. Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis. *N Engl J Med* 2011;365:993-1003.

ICAS: Guidelines

Intracranial stenting NOT recommended for the treatment of intracranial 70-99% stenosis

DAPT with ASA 325 mg and Clopidogrel 75 mg started within 30 days of stroke or TIA and treated for up to 90 days **should be considered for each patient on an individual basis** along with aggressive management of all vascular risk factors (blood pressure, lipids, diabetes mellitus, and other at-risk lifestyle patterns)

Case 3

Catherine is a 72 year old female patient admitted to hospital with new bilateral, multiterritory strokes (infarcts in the right ACA, right MCA, & left PCA territories) today.

Past Medical History: **Relevant Findings & Laboratory Results:** BP 140/85, HR 77 Hypertension Weight 55kg GERD ٠ Osteoarthritis HbA1C 5.6% ٠ LDL 3.6 mmol/L • Home Medications: Hgb 122 g/dL ٠ {Coversyl Plus} Perindopril SCr 68 umol/L ٠ 4mg – Indapamide 1.25mg ECG: Atrial Fibrillation ٠ PO daily TTE: Dilated left atrium, normal LV/RV size and • Pantoprazole 40mg PO daily function, no obvious thrombus, mild TR Acetaminophen 500mg po 3 CTA: unremarkable ٠ to 4 times daily PRN Ibuprofen 400mg po PRN if

What medications should be started for appropriate secondary stroke prevention?

acetaminophen not effective

Polling question: most appropriate antithrombotic therapy for Catherine **right now**?

- A. Acetylsalicylic acid (ASA)
- B. Clopidogrel
- C. ASA and Dipyridamole
- D. A, B, or C
- E. DAPT ASA + Clopidogrel x 21-30 days, then SAPT with either agent
- F. DAPT ASA + Clopidogrel x 90 days, then SAPT with either agent
- G. Oral anticoagulation

Polling question: most appropriate antithrombotic therapy for Catherine long-term?

- A. Acetylsalicylic acid (ASA)
- B. Clopidogrel
- C. ASA and Dipyridamole
- D. A, B, or C
- E. DAPT ASA + Clopidogrel x 21-30 days, then SAPT with either agent
- F. DAPT ASA + Clopidogrel x 90 days, then SAPT with either agent
- G. Oral anticoagulation

Case 3

Catherine is a 72 year old female patient admitted to hospital with new bilateral, multiterritory strokes (infarcts in the right ACA, right MCA, & left PCA territories) today.

Past Medical History:

- Hypertension
- GERD
- Osteoarthritis

Home Medications:

- {Coversyl Plus} Perindopril 4mg – Indapamide 1.25mg PO daily
- Pantoprazole 40mg PO daily
- Acetaminophen 500mg po 3 to 4 times daily PRN
- Ibuprofen 400mg po PRN if acetaminophen not effective

Relevant Findings & Laboratory Results:

- BP 140/85, HR 77
- Weight 55kg
- HbA1C 5.6%
- LDL 3.6 mmol/L
- Hgb 122 g/dL
- SCr 68 umol/L
- ECG: Atrial Fibrillation
- TTE: Dilated left atrium, normal LV/RV size and function, no obvious thrombus, mild TR
- CTA: unremarkable

What medications should be started for appropriate secondary stroke prevention?

 $CHADS_2 = 3$ $CHA_2DS_2-VASc = 5$ HASBLED = 3

Anticoagulation for SPAF

Patients with transient ischemic attack or ischemic stroke and non-valvular atrial fibrillation **should receive oral anticoagulation** [Evidence Level A]

In most patients requiring anticoagulants for atrial fibrillation, **direct non-vitamin K oral anticoagulants (DOAC)** such as apixaban, dabigatran, edoxaban, or rivaroxaban should be prescribed in preference over warfarin [Evidence Level A]

For patients **already receiving warfarin** with good International Normalized Ratio (INR) control (Range 2.0 – 3.0, with TTR >70%), **continuing warfarin** is a **reasonable** anticoagulation option [Evidence Level B]

Anticoagulation: when to start?

"The optimal timing to start anticoagulant therapy after stroke has not been defined by clinical trial evidence, and should be based on individual benefit/risk assessment taking into account the clinical circumstances, infarct size, imaging appearances, age, comorbidities, and estimated stroke recurrence risk."

Bridging with **antiplatelet therapy** is suggested until the patient is anticoagulated

1. Wein et al. Canadian Stroke Best Practices Guidelines: Secondary Prevention of Stroke. Int J Stroke, 2017

Heidbuchel et al. EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary. European heart journal. 2013;34(27):2094-2106

Polling Question: most appropriate lipid-lowering therapy for Catherine?

- A. Atorvastatin 80mg
- B. Atorvastatin 10mg
- C. Rosuvastatin 40mg
- D. A or C
- E. Ezetimibe 10mg
- F. No therapy

Population Adult patients who had ischemic or hemorrhagic stroke or TIA within one to six months before study entry

- Had LDL cholesterol of 2.6 to 4.9 mmol/L
- Had no known coronary heart disease
- Excluded: atrial fibrillation, other cardiac sources of embolism, and subarachnoid hemorrhage

Intervention Atorvastatin 80 mg daily

Comparison Placebo

Outcome First nonfatal or fatal stroke (followed for 4.9 years)

Table 2. Estimates of the Hazard Ratio for the Primary and Secondary Efficacy Outcome Measures.							
Outcome*	Atorvastatin Placebo (N = 2365) (N = 2366)		Unadjusted P Value†	Prespecified Adjusted Model‡			
				HR (95% CI)	P Value		
	no.	(%)					
Primary outcome							
Nonfatal or fatal stroke§	265 (11.2)	311 (13.1)	0.05	0.84 (0.71–0.99)	0.03		
Nonfatal stroke	247 (10.4)	280 (11.8)	0.14	0.87 (0.73–1.03)	0.11		
Fatal stroke	24 (1.0)	41 (1.7)	0.04	0.57 (0.35–0.95)	0.03		
Secondary outcomes							
Stroke or TIA	375 (15.9)	476 (20.1)	< 0.001	0.77 (0.67–0.88)	< 0.001		
TIA	153 (6.5)	208 (8.8)	0.004	0.74 (0.60-0.91)	0.004		
Major coronary event§	81 (3.4)	120 (5.1)	0.006	0.65 (0.49–0.87)	0.003		
Death from cardiac causes	40 (1.7)	39 (1.6)	0.90	1.00 (0.64–1.56)	1.00		
Nonfatal myocardial infarction	43 (1.8)	82 (3.5)	0.001	0.51 (0.35-0.74)	< 0.001		
Resuscitation after cardiac arrest	1 (<0.1)	1 (<0.1)	_	_	_		
Major cardiovascular event	334 (14.1)	407 (17.2)	0.005	0.80 (0.69–0.92)	0.002		
Acute coronary event	101 (4.3)	151 (6.4)	0.001	0.65 (0.50-0.84)	0.001		
Any coronary event	123 (5.2)	204 (8.6)	< 0.001	0.58 (0.46-0.73)	< 0.001		
Revascularization¶	94 (4.0)	163 (6.9)	< 0.001	0.55 (0.43-0.72)	<0.001		
Any cardiovascular event	530 (22.4)	687 (29.0)	< 0.001	0.74 (0.66–0.83)	< 0.001		
Death	216 (9.1)	211 (8.9)	0.77	1.00 (0.82–1.21)	0.98		
Death from cardiovascular disease	78 (3.3)	98 (4.1)	0.14	0.78 (0.58–1.06)	0.11		
Death from cancer	57 (2.4)	53 (2.2)	0.67	1.05 (0.72–1.53)	0.80		
Death from infection	26 (1.1)	20 (0.8)	_	_	_		
Accidental or violent death	11 (0.5)	6 (0.3)	_	_	_		
Death from other causes	23 (1.0)	15 (0.6)	_	_	_		
Unclassified deaths	21 (0.9)	19 (0.8)	_	_	_		

SPARCL (2006): Results

- 5-year absolute reduction in risk of any stroke 2.2%; relative risk reduction of 16%, adjusted hazard ratio 0.84 (95% CI 0.71–0.99; p = 0.03)
- 46 patients would need to be treated for 5 years to prevent one stroke
- Reduction in ischemic stroke (HR 0.78, 95% CI 0.66–0.94) BUT increased risk of hemorrhagic stroke (HR 1.66, 95% CI 1.08- 2.55) in atorvastatin group
 - Atorvastatin group had 218 ischemic strokes and 55 hemorrhagic strokes
 - Placebo group had 274 ischemic strokes and 33 hemorrhagic strokes.
- Overall mortality rate was similar, with 216 deaths in the atorvastatin group and 211 deaths in the placebo group (P=0.98)

From the guidelines...

"A statin should be prescribed as secondary prevention to patients who have had an ischemic stroke or transient ischemic attack in order to achieve a **target LDL cholestero**l consistently less than 2.0 mmol/L or >50% reduction of LDL cholesterol, from baseline [Evidence Level B]

Statin therapy is **not indicated** for prevention of **intracerebral hemorrhage** [Evidence Level B]."

"Note: The current clinical trial evidence does not include enough stroke patients with atrial fibrillation or other cardioembolic sources to make specific recommendations for this patient population. The decision to use statins in this setting should be based on the patient's global cardiovascular risk. It is unclear whether statins are of benefit in patients with a combination of atrial fibrillation and stroke."

CCS Dyslipidemia guidelines

RISK ASSESSMENT, STRATIFICATION & TREATMENT CONSIDERATION

Calculate risk (unless statin-indicated condition) using the <u>Framingham Risk Score (FRS)</u>⁺ or <u>Cardiovascular Life Expectancy Model (CLEM)</u>⁺ Repeat screening every 5 years for FRS <5% or every year for FRS ≥5%

Anderson TJ et al. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Canadian Journal of Cardiology. 32(11): 1263 - 1282

Statin-indicated conditions

CLINICAL ATHEROSCLEROSIS

Myocardial infarction, acute coronary syndromes Stable angina, documented coronary disease by angiography (>10% stenoses)

Stroke, TIA, documented carotid disease Peripheral artery disease, claudication and/or ABI < 0.9

ABDOMINAL AORTIC ANEURYSM

Abdominal aorta > 3.0 cm or Previous aneurysm surgery

DIABETES MELLITUS

≥ 40 years of age or
 > 15 years duration and age ≥ 30 years or
 Microvascular complications

CHRONIC KIDNEY DISEASE

> 3 months duration and ACR > 3.0 mg/mmol or eGFR < 60 ml/min/1.73m²

LDL-C ≥ 5.0 MMOL/L

LDL-C ≥ 5.0 mmol/L or Document familial hypercholesterolemia Excluded 2nd causes

Figure 4. Conditions for which pharmacotherapy with statins is indicated. ABI, ankle-brachial index; ACR, albumin:creatinine ratio; eGFR, estimated glomerular filtration rate; LDL-C, low-density lipoprotein cholesterol; TIA, transient ischemic attack.

Anderson TJ et al. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Canadian Journal of Cardiology. 32(11): 1263 - 1282

Case 3

Catherine is a 72 year old female patient admitted to hospital with new bilateral, multiterritory strokes (infarcts in the right ACA, right MCA, & left PCA territories) today.

What medications should be started for appropriate secondary stroke prevention?

Statin therapy: key considerations

What if...?

Catherine's ECG and 48H Holter did **NOT** show atrial fibrillation? *How does this affect the choice of antithrombotic therapy?*

ESUS – "Embolic Stroke of Undetermined Source"

All 4 must be present:

- 1. Non-lacunar ischemic stroke on CT or MRI
- 2. Absence of atherosclerosis (extra- or intracranial) causing ≥50% luminal stenosis in arteries supplying the ischemic area
- 3. No major risk cardioembolic source

Major risk source = atrial fibrillation (permanent or paroxysmal), sustained atrial flutter, intracardiac thrombus, prosthetic cardiac valve, cardiac tumors (e.g. atrial myxoma), mitral stenosis, recent (<4 weeks) MI, left ventricular EF <30%, valvular vegetations, or infective endocarditis

4. No other specific cause of stroke identified

E.g. arteritis, dissection, migraine/vasospasm, drug abuse

Does Catherine meet the criteria for ESUS stroke?

ESUS: Potential Causes

Structural heart disease

e.g. mitral annular calcification, calcific aortic valve, atrial septal aneurysm

Cancer-associated strokes

Arteriogenic emboli

e.g. aortic arch atherosclerotic plaques

Paradoxical embolism from venous circulation

e.g. involving patent foramen ovale or pulmonary arteriovenous fistula

Undetected paroxysmal atrial fibrillation

 Nouh, A et al. Embolic Strokes of Unknown Source and Cryptogenic Stroke: Implications in Clinical Practice. Front Neurol. 2016; 7:37.

Martinez-Majander, N. Medical Management of ESUS - what have we learnt so far? European Stroke Organization. 2018.

ESUS Management

Summary: DOAC trials for ESUS patients

	NAVIGATE-ESUS ¹	RE-SPECT ESUS ²	ATTICUS ³
DOAC	Rivaroxaban 15mg daily	 Dabigatran 150mg BID 110mg BID if ≥75 years old and if est. CrCl 30- 50mL/min 	Apixaban 5mg BID
Comparator	ASA 100mg daily	ASA 100mg daily	ASA 100mg daily
Population	7213 patients with ESUS	5390 patients with ESUS	ESUS patients, still recruiting
Primary Efficacy Outcome	 1st recurrence of stroke or systemic embolism 172 patients in the rivaroxaban group (annualized rate, 5.1%) 160 in the ASA group (annualized rate, 4.8%) HR, 1.07; 95% CI, 0.87 to 1.33; P=0.52 	 Recurrent stroke 177 patients (6.6%) in the dabigatran group (4.1% per year) 207 patients (7.7%) in the ASA group (4.8% per year) HR 0.85; 95% CI, 0.69 to 1.03; P=0.10 	TBD
Primary Safety Outcome	 Rate of major bleeding 62 patients in the rivaroxaban group (annualized rate, 1.8%) 23 in the ASA group (annualized rate, 0.7%) HR 2.72; 95% Cl, 1.68 to 4.39; P<0.001 	 Major bleeding 77 patients (1.7% per year) in the dabigatran group 64 patients (1.4% per year) in the ASA group HR, 1.19; 95% CI, 0.85 to 1.66 	
Conclusion	Rivaroxaban not superior to ASA to prevent recurrent stroke Rivaroxaban associated with a higher risk of bleeding vs ASA	Dabigatran was not superior to ASA in preventing recurrent stroke Incidence of major bleeding was not greater in the dabigatran group than in the ASA group	

ESUS: Antithrombotic Management

Available evidence does not support anticoagulation

Antiplatelet therapy mainstay of therapy **until** an indication for anticoagulation is present

Further diagnostic workup may be warranted

Including prolonged Holter monitoring to capture paroxysmal AF if present (EMBRACE trial)

What if...?

Catherine had known atrial fibrillation at the time of her stroke and was already on anticoagulation with Apixaban 5mg q12h?

Catherine was on ASA 81mg daily at the time of her stroke?

Case 4:

Jane is a 84 year old female patient admitted to hospital with a new L MCA stroke confirmed on CT today.

Past Medical History:

- Atrial Fibrillation
- Hypertension
- Dyslipidemia
- Type 2 Diabetes Mellitus
- Depression

Home Medications:

- Apixaban 5mg PO q12h
- Ramipril 5mg PO daily
- Bisoprolol 2.5mg PO daily
- Atorvastatin 10mg PO daily
- Metformin 500mg PO BID
- Sitagliptin 100mg PO daily
- Sertraline 50mg PO daily

Relevant Findings & Laboratory Results:

- BP 167/90, HR 84
- Weight 68kg
- HbA1C 7.6%
- LDL 2.3 mmol/L
- Hgb 123 g/L
- SCr 76 umol/L
- ECG: Atrial Fibrillation
- CTA: L carotid stenosis (90%); R carotid atherosclerosis without stenosis

What medications should be started for appropriate secondary stroke prevention?

Case 4:

Jane is a 84 year old female patient admitted to hospital with a new L MCA stroke confirmed on CT today.

Past Medical History:

- Atrial Fibrillation
- Hypertension
- Dyslipidemia
- Type 2 Diabetes Mellitus
- Depression

Home Medications:

- Apixaban 5mg PO q12h
- Ramipril 5mg PO daily
- Bisoprolol 2.5mg PO daily
- Atorvastatin 10mg PO daily
- Metformin 500mg PO BID
- Sitagliptin 100mg PO daily
- Sertraline 50mg PO daily

Relevant Findings & Laboratory Results:

- **BP 167/90**, HR 84
- Weight 68kg
- HbA1C 7.6%
- LDL 2.3 mmol/L
- Hgb 123 g/L
- SCr 76 umol/L
- ECG: Atrial Fibrillation
- CTA: L carotid stenosis (90%); R carotid atherosclerosis without stenosis

AF & cerebral atherosclerosis

Atrial fibrillation (AF) is a known major risk factor for ischemic stroke

Oral anticoagulants significantly reduce the risk of stroke in patients with AF

Cerebral atherosclerosis is also a known major cause of ischemic stroke

Management is variable but includes antiplatelet therapy

Ischemic stroke workup includes screening for both AF and cerebral atherosclerosis... *some patients have both*

Symptomatic Carotid Stenosis

Recent TIA or stroke AND ipsilateral **50 to 99 %** symptomatic carotid stenosis:

Selected patients should be offered carotid endarterectomy (revascularization) as soon as possible

Recent TIA or stroke and ipsilateral 70-99 % symptomatic carotid stenosis

> Carotid endarterectomy should be performed on an urgent basis

Carotid endarterectomy > carotid stenting: for patients over age 70 years who are otherwise fit for surgery.

Current evidence indicates stenting carries a higher peri-procedural risk of stroke and death in older patients.

Carotid stenting may be considered for patients who are not operative candidates for technical, anatomic or medical reasons

Potential Interventions

Clinical Question

How do we make decisions surrounding antiplatelet + anticoagulant therapy in these cases?
Clinical decision depends on...

A. Carotid Endarterectomy (CEA) + AF

B. Carotid Stenting (CAS) + AF

C. Medical management + AF

Anticoagulant Selection

Guidelines recommend direct oral anticoagulant (DOAC) > warfarin for stroke prevention in nonvalvular AF¹

Consider a DOAC with a favourable bleed risk profile especially for patients on dual or triple antithrombotic therapy

May consider reversibility, e.g. idarucizumab with dabigatran

Dabigatran cannot be crushed for patients with dysphagia

Some experts may elect to dose-reduce OAC while on triple antithrombotic therapy, depending on patient factors and preferences

Uncommon given this population is at very high risk of stroke secondary to AF

Extrapolated from coronary PCI trial data (covered in a separate module) and there are **no trials** to guide this in non-coronary PCI patients

DAPT by itself confers some benefit for stroke risk reduction in AF

Antiplatelet Selection

If triple antithrombotic therapy, DAPT with clopidogrel and ASA

Avoid ticagrelor with OAC given increased bleed risk versus clopidogrel

Patients will generally step down to SAPT with ASA (due to lower cost) if they were not on ASA prior to their stroke

Patients may step down to SAPT with clopidogrel instead if they were on ASA prior to their stroke

Use low-dose ASA, i.e. 80mg or 81mg PO daily

Managing modifiable risk factors for bleeding

For patients on combined anticoagulant & antiplatelet therapy:

- Control blood pressure to target
- > Avoid co-prescription of NSAIDs
- Educate patients to limit alcohol intake to less than 8 standard drinks per week
- May consider co-prescription of proton-pump inhibitor (PPI) for gastroprotection in select patients with high risk of bleeding
 - PPI recommended for patients with prior history of gastrointestinal (GI) bleed¹
 - PPI reasonable for patients of advanced age, on concomitant warfarin, DOACs, steroids, or NSAIDs¹
- > If warfarin is the anticoagulant:
 - Some experts may recommend an INR target of 2-2.5 (rather than 2-3) for stroke prevention in AF
 - Consider more frequent INR monitoring

Clinical Tips

Review all patients on dual and triple antithrombotic therapy to ensure there is an appropriate indication for each agent

Educate and monitor patients on dual and triple antithrombotic therapy for signs and symptoms of bleeding

Ensure appropriate follow up and that dual and triple antithrombotic therapy is flagged for re-assessment

There are very few cases for which a patient should be on dual or triple antithrombotic therapy indefinitely!

Summary

Hypertension management, diabetes management, other risk factor modification

Antithrombotic therapy summary

